Novel Antimicrobial Titanium Dioxide Nanotubes Obtained through a Combination of Atomic Layer Deposition and Electrospinning Technologies

نویسندگان

  • Carol López de Dicastillo
  • Cristian Patiño
  • María Jose Galotto
  • Juan Luis Palma
  • Daniela Alburquenque
  • Juan Escrig
چکیده

The search for new antimicrobial substances has increased in recent years. Antimicrobial nanostructures are one of the most promising alternatives. In this work, titanium dioxide nanotubes were obtained by an atomic layer deposition (ALD) process over electrospun polyvinyl alcohol nanofibers (PVN) at different temperatures with the purpose of obtaining antimicrobial nanostructures with a high specific area. Electrospinning and ALD parameters were studied in order to obtain PVN with smallest diameter and highest deposition rate, respectively. Chamber temperature was a key factor during ALD process and an appropriate titanium dioxide deposition performance was achieved at 200 °C. Subsequently, thermal and morphological analysis by SEM and TEM microscopies revealed hollow nanotubes were obtained after calcination process at 600 °C. This temperature allowed complete polymer removal and influenced the resulting anatase crystallographic structure of titanium dioxide that positively affected their antimicrobial activities. X-ray analysis confirmed the change of titanium dioxide crystallographic structure from amorphous phase of deposited PVN to anatase crystalline structure of nanotubes. These new nanostructures with very large surface areas resulted in interesting antimicrobial properties against Gram-positive and Gram-negative bacteria. Titanium dioxide nanotubes presented the highest activity against Escherichia coli with 5 log cycles reduction at 200 μg/mL concentration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphology and crystallinity control of ultrathin TiO2 layers deposited on carbon nanotubes by temperature-step atomic layer deposition.

Carbon nanotubes (CNTs) coated with titanium oxide (TiO2) have generated considerable interest over the last decade and become a promising nanomaterial for a wide range of energy applications. The efficient use of the outstanding electrical properties of this nanostructure relies heavily on the quality of the interface and the thickness and morphology of the TiO2 layer. However, complete surfac...

متن کامل

The preparation of tubular heterostructures based on titanium dioxide and silica nanotubes and their photocatalytic activity.

Tubular heterostructures based on titanium dioxide (TiO2) and silica nanotubes (SNTs) with high photocatalytic activity have been successfully obtained by a simple combination of an electrospinning technique and a solvothermal process. The as-prepared products were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (X...

متن کامل

The controlled deposition of metal oxides onto carbon nanotubes by atomic layer deposition: examples and a case study on the application of V2O4 coated nanotubes in gas sensing.

A new atomic layer deposition (ALD) process was applied for the uniform coating of carbon nanotubes with a number of transition-metal oxide thin films (vanadium, titanium, and hafnium oxide). The presented approach is adapted from non-aqueous sol-gel chemistry and utilizes metal alkoxides and carboxylic acids as precursors. It allows the coating of the inner and outer surface of the tubes with ...

متن کامل

Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates.

Hollow nano-objects have raised interest in applications such as sensing, encapsulation, and drug-release. Here we report on a new class of porous materials, namely inorganic nanotube aerogels that, unlike other aerogels, have a framework consisting of inorganic hollow nanotubes. First we show a preparation method for titanium dioxide, zinc oxide, and aluminum oxide nanotube aerogels based on a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2018